-
-
-
- Challenges and Chances: A Review of the 1st Stem Cell Community Day
- Summertime, and the Livin’ Is Easy…
- Follow-on-Biologics – More than Simple Generics
- Bacteria Versus Body Cells: A 1:1 Tie
- Behind the Crime Scene: How Biological Traces Can Help to Convict Offenders
- Every 3 Seconds Someone in the World Is Affected by Alzheimer's
- HIV – It’s Still Not Under Control…
- How Many Will Be Convicted This Time?
- Malaria – the Battle is Not Lost
- Physicians on Standby: The Annual Flu Season Can Be Serious
- At the Forefront in Fighting Cancer
- Molecular Motors: Think Small and yet Smaller Again…
- Liquid Biopsy: Novel Methods May Ease Cancer Detection and Therapy
- They Are Invisible, Sneaky and Disgusting – But Today It’s Their Special Day!
- How Many Cells Are in Your Body? Probably More Than You Think!
- What You Need to Know about Antibiotic Resistance – Findings, Facts and Good Intentions
- Why Do Old Men Have Big Ears?
- The Condemned Live Longer: A Potential Paradigm Shift in Genetics
- From Research to Commerce
- Chronobiology – How the Cold Seasons Influence Our Biorhythms
- Taskforce Microbots: Targeted Treatment from Inside the Body
- Eyes on Cancer Therapy
-
-
-
-
-
- Challenges and Chances: A Review of the 1st Stem Cell Community Day
- Summertime, and the Livin’ Is Easy…
- Follow-on-Biologics – More than Simple Generics
- Bacteria Versus Body Cells: A 1:1 Tie
- Behind the Crime Scene: How Biological Traces Can Help to Convict Offenders
- Every 3 Seconds Someone in the World Is Affected by Alzheimer's
- HIV – It’s Still Not Under Control…
- How Many Will Be Convicted This Time?
- Malaria – the Battle is Not Lost
- Physicians on Standby: The Annual Flu Season Can Be Serious
- At the Forefront in Fighting Cancer
- Molecular Motors: Think Small and yet Smaller Again…
- Liquid Biopsy: Novel Methods May Ease Cancer Detection and Therapy
- They Are Invisible, Sneaky and Disgusting – But Today It’s Their Special Day!
- How Many Cells Are in Your Body? Probably More Than You Think!
- What You Need to Know about Antibiotic Resistance – Findings, Facts and Good Intentions
- Why Do Old Men Have Big Ears?
- The Condemned Live Longer: A Potential Paradigm Shift in Genetics
- From Research to Commerce
- Chronobiology – How the Cold Seasons Influence Our Biorhythms
- Taskforce Microbots: Targeted Treatment from Inside the Body
- Eyes on Cancer Therapy
-
-
Regarding suitability of Eppendorf bioprocess equipment in GMP-regulated applications, please reach out to your Eppendorf sales representative.
Stem Cell Bioprocessing
もっと読む
表示を減らす
Webinar: Breaking boundaries in bioprocess development
Join experts from Hannover Medical School, Pluri Inc., and Eppendorf and find out more about unleashing the power of stirred-tank bioreactors for cell and gene therapies!
New to stem cell bioprocessing? Find your answers below.
What are bioreactors?
The success of stem cell bioprocessing relies on robust and reproducible culture conditions and processes. Bioreactors are vessels used to culture a broad range of cell types in precisely controlled conditions to provide optimal productivity, efficiency, and product quality. Bioreactors come in a range of sizes from milliliters to hundreds of liters. They can either be single-use or made of glass or stainless steel.
もっと読む
表示を減らす
What are the advantages of bioreactors over cell culture flasks?
- Better reproducibility: In bioreactors you can monitor critical culture parameters including pH , Dissolved Oxygen (DO) , temperature and nutrient feeding and automatically adjust them by bioprocess monitoring and control software. Like this, culture conditions and as a result culture outcome can be better reproduced.
- Simpler scale-up: Many stem cell applications in cell therapy development, drug discovery, and lab-grown meat require high cell numbers. When using a bioreactor one can increase the size of the culture vessel to many liters and even more, unlike cell culture flasks where the number of vessels must be increased after a certain point. Using one big vessel instead of many small ones saves space and manual labor, thus simplifying the process of increasing the number of cultured cells.
もっと読む
表示を減らす
もっと読む
表示を減らす
How can I cultivate adherent stem cells in bioreactors?
The majority of stem cells are adherent cells and require a support matrix to grow. In 2D cultures, this means growing stem cells in dishes or flasks, however, these systems are often challenging to scale-up. Fortunately, there are many available options to grow adherent cells in bioreactors including:
- Cell-only aggregates: This technique involves allowing cells to adhere to one another and form an aggregate. This technique is often used for the cultivation of induced pluripotent stem cells (iPSCs) in bioreactors.
- Microcarriers: Microcarriers are spherical beads, which are added to the culture medium and serve as a surface for adherent cells such as mesenchymal stem cells (MSCs) to attach and grow. Microcarriers are made of a variety of materials. They can have specific coatings to enhance cell attachment, yield and viability.
- Fibra-Cel® Disks: Disks made of polyester and polypropylene provide a growth support for adherent cells in both packed-bed bioreactors and in suspension. Due to their three-dimensionality and fibrous material, Fibra-Cel Disks allow for easy cell attachment, a high surface-to-volume-ratio, and provide a low-shear environment. This often results in increased total biomass compared to many microcarriers.
もっと読む
表示を減らす
もっと読む
表示を減らす
Can I also differentiate my stem cells in a bioreactor?
もっと読む
表示を減らす
Can I cultivate iPSCs as well as MSCs in bioreactors?
もっと読む
表示を減らす
How can I switch from stem cell culture in flasks and dishes to bioreactors?
もっと読む
表示を減らす
Infographic: Stem cell culture in bioreactors
Download our infographic for some tips to help you transfer your stem cell culture from dishes and flasks to bioreactors.
Interview: Increasing hiPSC yields
Robert Zweigerdt fromHannover Medical Schoolexplains how his groupconverted stem cell culture to bioreactors and which process optimization measures were crucial to increase the cell yield.
Panel discussion: Preparing your stem cell cultivation for commercialization
At what point in yourdevelopment should youconsider which cultivation method? How to switch from static to stirred-tank cultivation? Listen to experts from the Cell and Gene Therapy Catapult and Eppendorf to discover answers to these and more questions.
もっと読む
表示を減らす
Stem cell expertise at Eppendorf
もっと読む
表示を減らす
Choose the right bioreactor system
Bioreactor control stations
もっと読む
表示を減らす
Single-use bioreactors
もっと読む
表示を減らす
もっと読む
表示を減らす
Stem cell bioprocessing for the experts: Optimize your stem cell culture in bioreactors
How can I increase the yield of my stem cell culture in bioreactors?
もっと読む
表示を減らす
もっと読む
表示を減らす
How can I control the critical process parameters in my bioreactor?
Bioprocess monitoring and control
もっと読む
表示を減らす
Learn from biologics bioprocessing
もっと読む
表示を減らす
Where can I find information about the cultivation of MSCs in bioreactors?
もっと読む
表示を減らす
Read our application notes for some guidelines on how to culture MSCs in bioreactors
Where can I find information about the cultivation of iPSCs in bioreactors?
もっと読む
表示を減らす
Read our application notes for some guidelines on how to culture hiPSCs in bioreactors
How can I produce stem cell-derived exosomes in bioreactors?
もっと読む
表示を減らす
Join the stem cell community!
もっと読む
表示を減らす